Create a continental scale tidal modelling framework utilising continental scale tidal prediction software developed by Oregon State University (OTPS, Egbert and Erofeeva, 2002, 2010). OTPS tide heights were attributed to Landsat observations in the DEA at corresponding times and dates, per location
The modelling process utilises continental scale tidal prediction software developed by Oregon State University (OTPS, Egbert and Erofeeva, 2002, 2010). OTPS tide heights were attributed to Landsat observations in the DEA at corresponding times and dates, per location.
To account for geographic and seasonal variations in tidal regimes and ranges, twelve tidal height rasters of the study region at 1km resolution were created utilising the OTPS model, at a randomly selected monthly epoch across a full year. Utilising these raster layers, the tidal modelling spatial framework was constructed with the following steps:
- Perform a multi-resolution segmentation using eCognition software, utilising all twelve tidal height inputs, to create a spatial representation of the multi-epoch tidal variation across the continent.
- Extract the centroids of the object segments created in eCognition and generate a Voronoi Polygon tessellation of the region.
- Perform a visual assessment and manual adjustment of the Voronoi polygon boundaries and nodes to ensure alignment with natural boundaries and coastal/island features.
Through this process, the coastal zone is divided into Voronoi polygons that capture the tidal complexity of the Australian coast, with areas of complex tidal behaviour represented using smaller polygons. The nodes of the polygons can then be used for the tidal attribution process as described in Sagar et al., (2017).
References:
Egbert, G.D., Erofeeva, S.Y., 2010. The OSU TOPEX/Poseiden Global Inverse Solution TPXO [WWW Document]. TPXO8-Atlas Version 10. URL http://volkov.oce.orst.edu/tides/global.html (accessed 2.15.16).
Egbert, G.D., Erofeeva, S.Y., 2002. Efficient Inverse Modeling of Barotropic Ocean Tides. J. Atmospheric Ocean. Technol. 19, 183–204. doi:10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2
Sagar, S., Roberts, D., Bala, B., Lymburner, L., 2017. Extracting the intertidal extent and topography of the Australian coastline from a 28 year time series of Landsat observations. Remote Sens. Environ. 195, 153–169. doi:10.1016/j.rse.2017.04.009
.